HDAC2 regulates FoxO1 during RANKL-induced osteoclastogenesis.

نویسندگان

  • Ce Dou
  • Nan Li
  • Ning Ding
  • Chuan Liu
  • Xiaochao Yang
  • Fei Kang
  • Zhen Cao
  • Hongyu Quan
  • Tianyong Hou
  • Jianzhong Xu
  • Shiwu Dong
چکیده

The bone-resorbing osteoclast (OC) is essential for bone homeostasis, yet deregulation of OCs contributes to diseases such as osteoporosis, osteopetrosis, and rheumatoid arthritis. Here we show that histone deacetylase 2 (HDAC2) is a key positive regulator during receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis and bone resorption. Bone marrow macrophages (BMMs) showed increased HDAC2 expression during osteoclastogenesis. HDAC2 overexpression enhanced, whereas HDAC2 deletion suppressed osteoclastogenesis and bone resorption using lentivirus infection. Mechanistically, upon RANKL activation, HDAC2 activated Akt; Akt directly phosphorylates and abrogates Forkhead box protein O1 (FoxO1), which is a negative regulator during osteoclastogenesis through reducing reactive oxygen species. HDAC2 deletion in BMMs resulted in decreased Akt activation and increased FoxO1 activity during osteoclastogenesis. In conclusion, HDAC2 activates Akt thus suppresses FoxO1 transcription results in enhanced osteoclastogenesis. Our data imply the potential value of HDAC2 as a new target in regulating osteoclast differentiation and function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity

Resveratrol (3,5,4-trihydroxystilbene, RES), a natural antioxidant, prevents bone loss by attenuating damage caused by oxidative stress. Our previous research revealed that the forkhead box O1 (FoxO1)/β-catenin signaling pathway affected the proliferation and differentiation of osteoblasts through its regulation of redox balance, and RES regulated the expression of FoxO1 to control white adipos...

متن کامل

Pim-1 regulates RANKL-induced osteoclastogenesis via NF-κB activation and NFATc1 induction.

Pim kinases are emerging as important mediators of cytokine signaling pathways in hematopoietic cells. In this study, we demonstrate that Pim-1 positively regulates RANKL-induced osteoclastogenesis and that Pim-1 expression can be upregulated by RANKL signaling during osteoclast differentiation. The silencing of Pim-1 by RNA interference or overexpression of a dominant negative form of Pim-1 (P...

متن کامل

Mitf Induction by RANKL Is Critical for Osteoclastogenesis

Microphthalmia-associated transcription factor (Mitf) regulates the development and function of several cell lineages, including osteoclasts. In this report, we identified a novel mechanism by which RANKL regulates osteoclastogenesis via induction of Mitf isoform E (Mitf-E). Both Mitf-A and Mitf-E are abundantly present in osteoclasts. Unlike Mitf-A, which is ubiquitously expressed and is prese...

متن کامل

MafB negatively regulates RANKL-mediated osteoclast differentiation.

Receptor activator of nuclear factor kappaB ligand (RANKL) induces osteoclast formation from hematopoietic cells via regulation of various transcription factors. Here, we show that MafB negatively regulates RANKL-induced osteoclast differentiation. Expression levels of MafB are significantly reduced by RANKL during osteoclastogenesis. Overexpression of MafB in bone marrow-derived monocyte/macro...

متن کامل

ISG15 regulates RANKL-induced osteoclastogenic differentiation of RAW264 cells.

Interferon-stimulated gene 15 kDa (ISG15) is a protein upregulated by interferon-β that negatively regulates osteoclastogenesis. We investigated the role of ISG15 in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenic differentiation of murine RAW264 cells. RANKL stimulation induced ISG15 expression in RAW264 cells at both the mRNA and protein levels. Overexpression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 310 10  شماره 

صفحات  -

تاریخ انتشار 2016